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 

Abstract---As a part of Maritime Domain Awareness, there is a 

requirement to detect ships in satellite-borne Synthetic Aperture 

Radar (SAR) images, which provide wide area ocean surveillance. 

When ship detection is implemented using a Constant False 

Alarm Rate (CFAR), statistical theory can be employed to ensure 

that proper parameters are used to find the thresholds for 

detection; inaccuracy in parameter estimation tends to lead to 

threshold bias and should be compensated. Otherwise, in spatially 

varying clutter, the practical performance of automatic ship 

detectors is likely to be compromised by increases in the false 

alarm rate and/or by reduction of the probability of detection.  

  

Index Terms---K-distribution, sea clutter, target detection, CFAR, 

detection threshold, SAR. 

 

I. INTRODUCTION 

 

HIP detection from images derived from satellite borne 

Synthetic Aperture Radar (SAR) is important because the 

area coverage rate can be very large; the satellites provide a 

wide area surveillance capability. The topic has been reviewed 

in some depth by Crisp [1], who discusses and compares a 

number of ship detection software systems. A more recent 

review with a Chinese perspective is provided in [2]; this 

attempts to summarize the status and the directions of future 

work. Other workers have contributed in [3]–[8]. Some of this 

cited work includes discussions on the benefits of polarimetric 

data and sub-aperture processing. 

Ships must be detected against a background of radar sea 

clutter. The K-distribution can be used to describe the intensity 

statistics of radar sea clutter [9]–[11] and is often employed in 

the automatic detection of ships from satellite radar imagery. 

The technique involves the specification of a Constant False 

Alarm Rate (CFAR), which implies that a threshold of 

detection is set according to the local statistics of the clutter at 

each point in the image plane. Detection losses due to three 

simple detection schemes are discussed by Armstrong and 

Griffiths [12] and their work also addresses the effects of 

errors in K-distribution parameter estimation. The K-

distribution has been discussed in detail by Redding [13]. The 

focus of [13] is on distribution parameter estimation. Other 

authors [14] have applied neural networks to optimize 

parameter extraction.  
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Though the K-distribution is usually an excellent empirical 

match to clutter statistics, the required FAR per pixel or 

resolution cell is extremely small, say 10
-9

, and the question of 

whether the distribution is an adequate representation of reality 

must be asked. In effect, a detection threshold far out in the tail 

of the distribution is required but must be determined mainly 

by the shape of the probability density function (pdf) near its 

peak; the accuracy with which the distribution represents the 

clutter is quite critical. 

Fortunately it has been shown that the K-distribution arises 

from a modulation of Gaussian complex clutter return [9]. The 

Gaussian part can be attributed to a large number of 

contributions from randomly phased Bragg waves by virtue of 

the Central Limit Theorem. A number of discrete reflection 

components, again randomly phased, would also be very likely 

to contribute a Gaussian complex signal. 

The modulating signal appropriate to the K-distribution is 

gamma distributed. The gamma probability density is one 

sided; over a wide range of parameters it exhibits a sharp peak. 

Tunaley [15] has recently shown that, for the purposes of 

determining a detection threshold, the details of the 

randomizing distribution may not be critical; this adds 

considerable support to the use of the distribution to represent 

sea clutter. For example, if the modulations arise from a great 

number of large scale ambient ocean surface gravity waves of 

random phase, the Central Limit Theorem likely applies and 

the gamma assumption can be discarded. However, even the 

assumption of a normal or Gaussian modulation distribution 

function seems not to be important. It may also be noted that 

gamma-like modulation can also arise from simple stochastic 

models [16]. 

It is not clear that all ocean features give K-distributed 

returns; for example, possible exceptions are some wind 

generated features and shoals [1]. Though a physical and 

statistical justification now exists, some post-processing is 

likely to be required. In the final analysis the performance of a 

ship detection software application based on the K-distribution 

will determine its validity.  

The K-distribution and approximations to it depend on three 

parameters, namely the mean, , the order or shape parameter, 

, and a parameter, L, which is the number of independent 

SAR looks and is determined essentially by the satellite radar 

hardware and the image processor; it should be known ahead 

of time. When applied to sea clutter, high values of  represent 

smooth Rayleigh distributed amplitude clutter (or 

exponentially distributed intensities) whereas low values of  

(perhaps as low as 0.1) represent spiky clutter.  

Significant research effort has been spent in parameter 

estimation for the K-distribution, which is relevant not only to 
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radar sea clutter but also to sonar signals and radio 

communication. 

Using the Cramér-Rao lower bound, Blacknell [17] contends 

that the ordinary mean estimator and the average of the 

logarithms of the samples are close to optimal for finding the 

parameters. A similar general approach is used here but 

numerical methods are employed and no attempt is made to 

employ Blacknell’s approximations to the K-distribution that 

are valid at large L.  

 Abraham and Lyons [18], [19] have analyzed a bootstrap 

method [20] for generating the K-distribution parameters. 

Some of their treatments parallel those used here but their 

emphasis is on the parameters themselves rather than the 

detection thresholds; it is not clear whether some of their 

approximations are appropriate to the tails of the distribution 

that are important for target detection. They also discuss the 

trade off between performance and computational complexity 

and point out that many calculations can be done ahead of 

time. Lookup tables can be employed for operational code. 

As shown in texts on statistics, for example [20] and [21], 

the extraction of the parameters in a pdf can be based on 

Maximum Likelihood (ML). However, mainly because of the 

Bessel function in the K-distribution, this is difficult to 

implement except by numerical means. Therefore efforts have 

been made to introduce sub-optimal statistical methods to 

minimize the computational load. 

 Dong and Crisp [23] have compared several schemes of 

simple parameter estimation with the ML approach. This is 

based largely on simulation and involves various averages 

based on the logarithm of the data. They find that a 

combination of expectations, E(X) and E(log(X)), where X is 

the signal intensity, provides the best estimates of the mean 

and K-distribution order parameter. Their study also 

demonstrated the effect of bias. 

 Perhaps the simplest statistic that might be used to extract 

the order parameter, , is the ratio of the clutter variance to the 

square of the mean. This type of approach falls under a 

category known as the Method Of Moments (MOM). 

As can be deduced from the Appendix, the variance of the 

intensity is given by: 
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This can be rearranged to yield the order parameter in terms 

of the mean, , and variance, 2
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Unfortunately, since  is not linearly related to 2
, 

significant bias will be introduced. (Later we use 1/ as the 

parameter of interest.) Furthermore, though MOM simplifies 

computation, when the measured variance of the clutter 

happens by chance to fall to low values, negative order 

parameters are predicted. If the clutter is truly Rayleigh, the 

probability of this is about 0.5. However, this is not the critical 

problem implied by some authors [18] as  can just be set to 

infinity. 

 Since the MOM approach can be far from optimal, other 

statistics, T, [22]–[25], have been proposed, which involve the 

logarithm of the data or a product: 

 )]log([ XrXT  , (3) 

where X is the intensity of a pixel, r is some constant and the 

square brackets indicate an average over a block of pixels. A 

study by Hu [25] suggests that improved parameter estimation 

is possible when r = 0.5.   

Because the distribution parameters must be extracted from 

a finite number of clutter samples, there is uncertainty in the 

parameter values. As will be shown, this translates into 

increased detection thresholds; significant bias is introduced as 

a result of the non-linear functionality between the parameters 

and the threshold.  The probabilities of false alarm and 

detection may be compromised and the ship detection 

performance may be degraded.  

II. THEORY 

 

 The K-distribution for the signal intensity, X, of a point in a 

single look image with mean, , and order (shape) parameter  

is given by [17]: 
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where K is a modified Bessel function of the second kind; its 

properties can be found in [26]. For multi-look images, the 

distribution itself cannot be expressed easily in closed form but 

the pdf is [13]: 
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where L is the number of independent looks, which is usually 

not an integer because sub-aperture images are typically 

somewhat correlated. It should be noted that the Bessel 

function is an even function of its order. 

 The parameters that must be estimated in practice are  and 

 and some care in the choice of a statistic is required. Not all 

statistics are capable of providing accurate estimates but we 

can at least determine the best result that might be obtainable. 

This not only provides a standard for evaluating the methods 

that might be employed but also indicates fundamental limits 

to practical detection performance. 

 The minimum covariance matrix for a parameter vector  

(in this case with components  and ) can be found using the 

Cramér-Rao inequality [20], which provides the variance of an 

unbiased estimator. This involves the efficient score vector, U, 

and for a single random pixel intensity, X, its components are 

given by: 
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XU
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)),(log(
),( . (6) 

It is easily shown from the normalization condition on x that 

the expectation of U with respect to x is zero. In our case, p is 

the K probability density. 
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The Fisher information matrix, i() is given by: 

 )()( mnnm UUEi  . (7) 

where E indicates an expectation value over x. The minimum 

covariance matrix for  is just the reciprocal of the Fisher 

information matrix [20].   

 The Fisher information can be calculated numerically from 

(5) and the result for  (i11, say) is shown in Fig. 1. Fig. 2 

shows the Fisher information for  (i22, say). The calculation is 

straightforward when  > 1 but, if  < 1, the pdf tends to 

infinity at the origin. Therefore asymptotic forms must be 

found for this region and the integral implied by (7) must be 

evaluated analytically for small x. To verify that the 

calculations were satisfactory, the normalization, mean, 

variance and fourth moments of the K-distribution were 

calculated and compared with the theoretical values. It was 

also verified that the expectation of the efficient score was 

close to zero. Some details are provided in the Appendix. 

 The cross terms in the Fisher information are usually quite 

small and, when the inverse is taken, barely affect the 

minimum variances. For example, the difference between   

(i11)
-1

 and (i
-1

)11 is typically less than a few percent but can be 

up to 15% in spiky clutter. 

 When the clutter statistics are derived from a block of N 

independent pixels, The Fisher information is the sum of that 

from each pixel so that, for constant distribution parameters, it 

increases by a factor N. Therefore the minimum variances and 

covariances decrease by N in the estimates of the parameters. 

Moreover, as N increases, the distribution of a parameter 

estimate approaches the normal distribution for the same 

reason as for the sum of any independent identically 

distributed random variables. For large N, the distribution of 

the estimate is almost entirely described by a mean and 

variance. Fig. 3 shows the ratio of the minimum Standard 

Deviation (SD) of the estimate of the mean as a function of  

for various L and N = 256. This was obtained by inverting the 

information matrix and is appropriate to a true mean of one. 

 Clutter spikiness increases the variance of the clutter 

intensity, which leads to a greater standard deviation in the 

estimate of the mean. Thus, as might be expected, the 

minimum standard deviation of  increases as  decreases. It 

too decreases with the number of looks because multi-looking 

is essentially pre-averaging. 

 As far as we can tell, the results for the mean with L = 1 are 

identical to those presented by Blacknell [17]. For L > 1, 

Blacknell has treated the sub-aperture multi-looks as 

independent samples; for example when L = 4, we interpret N 

samples as N independent samples each of 4 sub-apertures, 

which would correspond to 4N samples in Blacknell’s paper. 

 A mean is usually found by averaging pixel intensities. The 

SD of the estimate of the true mean is related to the variance 

according to (1). In fact the SD of the mean derived from the 

Fisher information is only very slightly less than that derived 

by the traditional method; the difference is typically about 1%. 

Therefore there is no requirement for a special treatment of 

estimates of the mean pixel intensity; the usual method 

provides essentially optimal accuracy. This is consistent with 

the simulations of other authors, e.g. [13].   

 It can be seen from Fig. 4 that the minimum SD of  tends to 

increase rapidly as  increases. This is because the pdf is not 

sensitive to  when  is large, so that the range over which 

values of  cannot be distinguished increases. Even with 256 

independent samples, the standard deviation is a significant 

fraction of the expected value for most order parameters 

encountered in practice (  > 1) and may even exceed it. 

 We find that the minimum SDs of  appear to be similar to 

those of Blacknell when  > 1 and L = 1 but is much smaller 

than his for  < 1. This may be due to the limitations of his 

calculation where approximations were required in this latter 

regime. 
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Fig. 1.  Fisher Information for the mean as a function of order parameter for 

the K-distribution for different numbers of looks; L = 1 (), L = 4 (), L = 

10 (). 
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Fig. 2.  Fisher Information for the order parameter as a function of order 

parameter for the K-distribution for different numbers of looks; L = 1 (), L 

= 4 (), L = 10 (). 

 

It is useful to compare the SDs of estimates based on practical 

statistics of the MOM type, such as the ratio of the mean to the 

variance, with the ideal SD provided by the Cramér-Rao 

bound. For comparison purposes, we assume that the mean is 
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known exactly. The order parameter, , can be found using 

(2). By differentiation, it is easily shown that: 
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Combining this with the result from equation (22) in the 

Appendix, we find for N independent pixel intensities: 
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Taking the square root of the variance on the left hand side, 

the SD is plotted in Fig. 5 for N = 256. It is clear that this is up 

to an order of magnitude greater than the theoretical minimum 

in Fig. 4 and that an estimate derived from 2
/ leaves much 

room for improvement. We note again that sub-optimality 

might be at least partly compensated by increasing N. 
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Fig. 3.  Minimum standard deviation for the estimated mean as a function of 

order parameter for the K-distribution for N = 256 and looks L = 1 (), L = 4 

(), L = 10 (). 
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Fig. 4.  Minimum standard deviation for the estimated  as a function of  for 

the K-distribution for N = 1000 and looks L = 1 (), L = 4 (), L = 10 (). 
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Fig. 5.  MOM standard deviation for the estimated  as a function of  for N 

= 256 and looks L = 1 (), L = 4 (), L = 10 (). 
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Fig. 6.  Ideal detection threshold based on the K-distribution for looks L = 1 

(), L = 4 (), L = 10 (). The PFA is 10-6. 

 

III. PROBABILTY OF FALSE ALARM 

 

 In practice a Probability of False Alarm (PFA) is specified 

and the threshold of detection is calculated as a multiple of the 

mean. Figs. 6 and 7 show the ideal detection threshold as a 

multiple of the mean as a function of  and L;  and  are 

supposed known exactly as if the number of independent 

pixels were infinite. The PFAs are 10
-6

 and 10
-9

 respectively. 

Though estimates of the mean will generally be unbiased, 

estimates of the order parameter may not be. Bias and 

uncertainty in the order parameter will generally cause bias in 

the detection threshold. When the variance of the sample is 

used to estimate the order parameter, bias in the variance can 

be removed by Bessel’s correction, in which the sum of the 

squares of the deviations is divided by (N-1) rather than N. It is 

also possible to correct for bias in an estimate of the variance 

of the variance (by dividing by (N+1) rather than N) but if N  
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100, these corrections make a negligible difference. The 

uncertainty in the parameter estimate is much more serious. 

 To illustrate the process, consider a single look image of 

Rayleigh clutter so that the pixel intensities are exponentially 

distributed with a normally distributed randomizing of the 

mean: 
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where 0 is the overall mean and 
2
 is its variance, which is 

actually equal to 0
2
/N. (When N >> 1, the lower limit of the 

integral can be extended to -.) This must be solved for the 

threshold, t. When N >> 1, the normal distribution is very 

concentrated about 0 and a steepest descents approach can be 

used. 

 The integrand is written as exp(f) where: 
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Differentiating with respect to  yields: 
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The integrand peaks when f = 0, which occurs when: 

 )( 0

22   t  (13) 

Clearly, when N is large, the left hand side is very small and, 

to a first approximation, we have: 

 2

0

2

0 /   t  (14) 

where t can be replaced by its value appropriate to zero 

variance, namely -0 log(PFA). 
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Fig. 7.  Ideal detection threshold based on the K-distribution for looks L = 1 

(), L = 4 (), L = 10 (). The PFA is 10-9, which is more realistic for 

SAR. 

 

 

 

After integrating, setting 
2
 = 0

2
/N and assuming N >> 1, the 

result is: 
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For example, if PFA = 10
-9

, 0 = 1 and N = 100, we find that t 

 25.0. This compares with 20.7 if no correction is made for 

the variance; the difference is very significant in terms of false 

alarms. 

 Though uncertainty in the mean will play an important role 

when N is small, it will often be overshadowed by uncertainty 

in the order parameter, especially in spiky clutter. In general, 

the exponential distribution in (10) can be replaced by an 

integral over the density. For large N, the PFA is then given 

approximately by: 
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where 
2
 is the variance of , which will be inversely 

proportional to N. As before, the principal assumption would 

be that N is sufficiently large, that the Central Limit Theorem 

applies and that the statistics are asymptotically normal for the 

order parameter so that it is characterized solely by its mean 

and variance. However, rather than randomize over , which is 

biased and causes problems with negative values, it is 

preferable to randomize over 1/, which ranges from zero 

(Rayleigh clutter) to infinity (spiky clutter). This is implied by 

(2) in which 1/0 is proportional to 2
. When 1/0 is small, 

negative values are suppressed by setting 1/ = 0. 

 The integrals corresponding to (16) were calculated 

numerically to yield a PFA for a given threshold. The 

randomization was actually over 1/ rather than, which 

avoided bias due to the non-linear relationship in (2). The 

variance of 1/ was determined from (1) and (22), i.e. 
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This corresponds to a MOM approach. The calculation was 

assisted by the approximation in [15]. It was observed that in 

spiky clutter the PFA can increase by over two orders of 

magnitude even when N = 1000. 

 To assess the effect on ship detection performance we need 

to hold the PFA constant and find the detection threshold. This 

was accomplished by adding a binary search to the previous 

PFA calculations. For a PFA of 10
-9

 and for values of N 

ranging from 100 to  the results are shown in Fig. 8. When N 

= 100, the threshold must be increased substantially; when N = 

10,000, there is up to a 7% increase in the detection threshold 

relative to the case of no uncertainty. 
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IV. DISCUSSION 

 

 It has been assumed that radar sea clutter statistics are 

closely approximated by the K-distribution. Then it has been 

shown that the usual estimate of the mean as the sum of 

independent values divided by N provides an estimate that is 

essentially optimal and, of course, it is unbiased. However, 

with N = 256 independent samples, the mean can be estimated 

only to within a few percent and this will affect the actual 

detection threshold, which is inversely proportional to the 

mean. 

 In very spiky clutter,  < 1, the pdf goes to infinity at the 

origin. This leads to the unexpected result that the order 

parameter component of the Fisher information tends to be 

concentrated not in the distribution tails but near the origin.  

This explains why moment techniques designed to extract the 

order parameter are ineffective in spiky clutter; they ignore 

this regime. It also explains why methods based on the 

logarithm of the data are an improvement. 
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Fig. 8.  Detection thresholds for PFA = 10-9, L = 4 and N = 100 (), N = 

1000 (), N = 10,000 () and N =  (). 

 

 The advantage of the MOM approach to the estimation of  

is that it is easy to calculate and can be unbiased. The theory is 

also simple compared with other approaches and functions 

well in smooth clutter. However, the variations in the estimates 

of  create a significant upward bias in the estimate of the 

detection threshold for a given PFA; the threshold may be 

increased dramatically for values of N < 1,000. This will 

typically result in an increase in the false alarm rate or a 

reduction in the probability of detecting a ship. 

 In practice both  and  will be uncertain and both these 

uncertainties will result in an increase in the detection 

threshold. However, the uncertainty in  is likely to dominate 

upward shifts in detection threshold.  

 The ship detection process must take into account variations 

in the clutter field. These additional variations will have a 

similar effect to the basic uncertainties in parameter 

estimation. The radar backscatter from the ocean surface 

depends mainly on the wind speed. Though it is often almost 

constant over quite large areas, it can vary spatially over scales 

of less than 1 km. For a SAR with a resolution of 75 m, only N 

 100 independent samples may be available to estimate the K-

distribution shape parameters. This represents another 

fundamental limitation to ship detection in SAR images. 

 Finally, the estimation of the clutter parameters must take 

into consideration the presence of a ship. This is discussed in 

[1]. (One technique is to employ a ship sized exclusion zone at 

the pixel in question and sample a ring of pixels around it.) 

The requirement for large N may produce problems in high 

density shipping areas. This is a topic for another study. 

 

V. CONCLUSIONS 

 

 The statistics of K-distributed clutter have been studied in 

the context of parameter extraction. In spiky clutter the shape 

of the pdf is important not only in the tails but also near the 

origin of the distribution. 

Uncertainty in the non-linear relationship between the 

parameters of the K-distribution and the CFAR detection 

threshold biases the detection threshold upwards. This implies 

that the false alarm rate can significantly increase relative to 

the situation where parameters can be determined accurately. 

On the other hand, if the threshold increases are compensated 

by an increase in the number of independent pixel intensities, 

N, used for the estimation, the ability to handle variations in 

clutter intensity will be affected.  

 Using MOM, the effects on detection threshold may be 

sufficiently minor to be acceptable when N > 1000 and 

especially if N  10,000.  However, it may be prudent to adapt 

N to the clutter variations and to accept the degradation in ship 

detection performance in regions where the variations are large 

or over small spatial scales. 

 Any prediction of ship detection performance should reflect 

the size of the block of pixels used. 

It will be useful to examine approaches other than those 

mentioned here to optimize performance without a large 

penalty in computational complexity. It is emphasized that the 

time needed to run a software application to detect ships is yet 

another parameter in the design trade-off of an operational 

ship detection system.  
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APPENDIX 

 

The moments of the K-distribution can be found using a 

relation from [26], namely: 
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where  is now just a constant. Thus the moments, mn, of the 

K-pdf in (5) but with unit mean are given by: 
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 The variance of the variance, with known mean, can be 

found in terms of the moments. By integrating over the pdf, it 

is easy to show that the variance of the variance is given by: 
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Therefore, from (19) we find that: 
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 When the order parameter is small, the pdf goes to infinity 

at x = 0. However, there exists an asymptotic expansion of the 

pdf, which is valid for x
2
 << 4| - L|. This is given by: 
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It is based on [26] and for small z and non-integer : 
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After integration we have for small x: 
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Clearly this integral is finite for small x (and by continuity also 

applies to integer ). 

 From (23) we can express the derivative of the logarithm of 

the pdf with respect to ; close to the origin we have: 

 xLC
xp
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where 

 )log()()(1),(  LLLC   (27) 

Here the digamma function, , is defined by: 
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 For example the contribution to the expectation of the 

efficient score by the distribution close to the origin is given 

by: 
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This is necessary to verify the integrity of the numerical 

calculations. 

We also need the Fisher information i22  for small x, which 

is given by: 
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This can be integrated to yield: 

 

























xxC
C

C

L

xLL
i

2

2

2

22

loglog
1

2
22

)()(

))((





 

 (31) 

 

 We include here some detailed results that will be useful for 

similar calculations involving the estimator log(X). A 

calculation of the mean and variance of log(X) is not 

straightforward. The key is to note that the K-distribution 

arises from a multiplicative process in which speckle is 

modulated by a random texture function that is independent 

from it. In the present context, both random variables in the 

multiplication are gamma distributed. Therefore, when 

logarithms are taken the result is a sum and the Laplace 

transforms (or characteristic functions) are multiplied together. 

The moments of a K-distributed variable can then be found by 

the usual process of differentiating the Laplace transform. 

 The Laplace transform of a pdf, p(x), is given by: 

 
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0
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, (32) 

where s is the transform variable. Now suppose a well behaved 

non-linear transformation of x to z is required, where z = z(x). 

The relationship of p(x) to p(z) is given by: 
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Therefore the Laplace transform of p(z) becomes: 
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For the case of the transformation z = -log(x), we have: 
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If p(x) is a gamma pdf, we have: 
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It follows that when the two logarithmic variates are added in 

the compound K-distribution, the Laplace transform is given 

by: 
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By differentiating with respect to s and then setting s to zero, it 

is easy to show that [17]: 
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where   is the derivative of , namely a polygamma 

function. 

 When the logarithm of the intensity is averaged over a 

clutter cell, the distribution of the average tends to the normal 

distribution and is characterized by a mean and variance. 

Therefore, if there are N independent estimates of the 

logarithm, the variance of the average becomes (second line of 

(38)): 
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However when N >> 1, by differentiation of the first line of 

(38) with respect to , we have  

 )(
1

)())(ln((

2




 VarXEVar 







 , (40) 

so that [17]: 
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